Docker Multi-Stage Builds for Production
Multi-stage builds are essential for creating production-ready Docker images. They allow you to optimize image size and security.
- Smaller Images: Exclude build tools and dependencies
- Better Security: Reduce attack surface
- Faster Deployments: Smaller images transfer faster
# Stage 1: Build
FROM node:18-alpine AS builder
WORKDIR /app
COPY package*.json ./
RUN npm ci
COPY . .
RUN npm run build
# Stage 2: Production
FROM node:18-alpine
WORKDIR /app
ENV NODE_ENV=production
COPY --from=builder /app/dist ./dist
COPY --from=builder /app/node_modules ./node_modules
COPY package*.json ./
EXPOSE 3000
CMD ["node", "dist/index.js"]
- Use specific base images
- Leverage layer caching
- Copy only necessary files
- Use .dockerignore
- Scan images for vulnerabilities
- Use distroless images when possible
- Minimize layers
- Use BuildKit for better caching
- Consider using Alpine Linux
Multi-stage builds are a best practice for production Docker images, significantly reducing size and improving security.
For Docker Multi-Stage Builds for Production, define pre-deploy checks, rollout gates, and rollback triggers before release. Track p95 latency, error rate, and cost per request for at least 24 hours after deployment. If the trend regresses from baseline, revert quickly and document the decision in the runbook.
Keep the operating model simple under pressure: one owner per change, one decision channel, and clear stop conditions. Review alert quality regularly to remove noise and ensure on-call engineers can distinguish urgent failures from routine variance.
Repeatability is the goal. Convert successful interventions into standard operating procedures and version them in the repository so future responders can execute the same flow without ambiguity.
For Docker Multi-Stage Builds for Production, define pre-deploy checks, rollout gates, and rollback triggers before release. Track p95 latency, error rate, and cost per request for at least 24 hours after deployment. If the trend regresses from baseline, revert quickly and document the decision in the runbook.
Keep the operating model simple under pressure: one owner per change, one decision channel, and clear stop conditions. Review alert quality regularly to remove noise and ensure on-call engineers can distinguish urgent failures from routine variance.
Repeatability is the goal. Convert successful interventions into standard operating procedures and version them in the repository so future responders can execute the same flow without ambiguity.
For Docker Multi-Stage Builds for Production, define pre-deploy checks, rollout gates, and rollback triggers before release. Track p95 latency, error rate, and cost per request for at least 24 hours after deployment. If the trend regresses from baseline, revert quickly and document the decision in the runbook.
Keep the operating model simple under pressure: one owner per change, one decision channel, and clear stop conditions. Review alert quality regularly to remove noise and ensure on-call engineers can distinguish urgent failures from routine variance.
Repeatability is the goal. Convert successful interventions into standard operating procedures and version them in the repository so future responders can execute the same flow without ambiguity.
For Docker Multi-Stage Builds for Production, define pre-deploy checks, rollout gates, and rollback triggers before release. Track p95 latency, error rate, and cost per request for at least 24 hours after deployment. If the trend regresses from baseline, revert quickly and document the decision in the runbook.
Keep the operating model simple under pressure: one owner per change, one decision channel, and clear stop conditions. Review alert quality regularly to remove noise and ensure on-call engineers can distinguish urgent failures from routine variance.
Repeatability is the goal. Convert successful interventions into standard operating procedures and version them in the repository so future responders can execute the same flow without ambiguity.